Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 299(11): 105325, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37805141

RESUMO

In multicellular organisms, a variety of lipid-protein particles control the systemic flow of triacylglycerides, cholesterol, and fatty acids between cells in different tissues. The chemical modification by oxidation of these particles can trigger pathological responses, mediated by a group of membrane proteins termed scavenger receptors. The lectin-like oxidized low-density lipoprotein (LOX-1) scavenger receptor binds to oxidized low-density lipoprotein (oxLDL) and mediates both signaling and trafficking outcomes. Here, we identified five synthetic proteins termed Affimers from a phage display library, each capable of binding recombinant LOX-1 extracellular (oxLDL-binding) domain with high specificity. These Affimers, based on a phytocystatin scaffold with loop regions of variable sequence, were able to bind to the plasma membrane of HEK293T cells exclusively when human LOX-1 was expressed. Binding and uptake of fluorescently labeled oxLDL by the LOX-1-expressing cell model was inhibited with subnanomolar potency by all 5 Affimers. ERK1/2 activation, stimulated by oxLDL binding to LOX-1, was also significantly inhibited (p < 0.01) by preincubation with LOX-1-specific Affimers, but these Affimers had no direct agonistic effect. Molecular modeling indicated that the LOX-1-specific Affimers bound predominantly via their variable loop regions to the surface of the LOX-1 lectin-like domain that contains a distinctive arrangement of arginine residues previously implicated in oxLDL binding, involving interactions with both subunits of the native, stable scavenger receptor homodimer. These data provide a new class of synthetic tools to probe and potentially modulate the oxLDL/LOX-1 interaction that plays an important role in vascular disease.


Assuntos
Sistema de Sinalização das MAP Quinases , Receptores Depuradores Classe E , Humanos , Receptores Depuradores Classe E/genética , Receptores Depuradores Classe E/química , Receptores Depuradores Classe E/metabolismo , Células HEK293 , Lipoproteínas LDL/metabolismo , Receptores Depuradores/metabolismo , Lectinas/metabolismo
2.
EMBO J ; 42(14): e112259, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37272165

RESUMO

Exposure of human cells to interferon-γ (IFNγ) results in a mitotically heritable yet reversible state called long-term transcriptional memory. We previously identified the clustered GBP genes as strongly primed by IFNγ. Here, we discovered that in primed cells, both interferon-responsive transcription factors STAT1 and IRF1 target chromatin with accelerated kinetics upon re-exposure to IFNγ, specifically at promotors of primed genes. Priming does not alter the degree of IFNγ-induced STAT1 activation or nuclear import, indicating that memory does not alter upstream JAK-STAT signaling. We found STAT1 to be critical to establish transcriptional memory but in a manner that is independent of mere transcription activation. Interestingly, while Serine 727 phosphorylation of STAT1 was maintained during the primed state, STAT1 is not required for the heritability of GBP gene memory. Our results suggest that the memory of interferon exposure constitutes a STAT1-mediated, heritable state that is established during priming. This renders GBP genes poised for subsequent STAT1 and IRF1 binding and accelerated gene activation upon a secondary interferon exposure.


Assuntos
Interferon gama , Transdução de Sinais , Humanos , Interferon gama/metabolismo , Fosforilação , Ativação Transcricional , Cromatina , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo
3.
Methods Mol Biol ; 2475: 113-124, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35451752

RESUMO

The endothelial response to vascular endothelial growth factor A (VEGF-A) regulates many aspects of animal physiology in health and disease. Such VEGF-A-regulated phenomena include vasculogenesis, angiogenesis, tumor growth and progression. VEGF-A binding to receptor tyrosine kinases such as vascular endothelial growth factor receptor 2 (VEGFR2 ) activates multiple signal transduction pathways and changes in homeostasis, metabolism, gene expression, cell proliferation, migration, and survival. One such VEGF-A-regulated response is a rapid rise in cytosolic calcium ion levels which modulates different biochemical events and impacts on endothelial-specific responses. Here, we present a series of detailed and robust protocols for evaluating ligand-stimulated cytosolic calcium ion flux in endothelial cells. By monitoring an endogenous endothelial transcription factor (NFATc2 ) which displays calcium-sensitive redistribution, we can assess the relevance of cytosolic calcium to protein function. This protocol can be easily applied to both adherent and non-adherent cultured cells to evaluate calcium ion flux in response to exogenous stimuli such as VEGF-A.


Assuntos
Células Endoteliais , Fator A de Crescimento do Endotélio Vascular , Animais , Cálcio/metabolismo , Movimento Celular , Células Cultivadas , Células Endoteliais/metabolismo , Neovascularização Fisiológica/fisiologia , Fosforilação , Transdução de Sinais/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
4.
Nat Commun ; 11(1): 501, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31980633

RESUMO

Centromeres are defined by a self-propagating chromatin structure based on stable inheritance of CENP-A containing nucleosomes. Here, we present a genetic screen coupled to pulse-chase labeling that allow us to identify proteins selectively involved in deposition of nascent CENP-A or in long-term transmission of chromatin-bound CENP-A. These include factors with known roles in DNA replication, repair, chromatin modification, and transcription, revealing a broad set of chromatin regulators that impact on CENP-A dynamics. We further identify the SUMO-protease SENP6 as a key factor, not only controlling CENP-A stability but virtually the entire centromere and kinetochore. Loss of SENP6 results in hyper-SUMOylation of CENP-C and CENP-I but not CENP-A itself. SENP6 activity is required throughout the cell cycle, suggesting that a dynamic SUMO cycle underlies a continuous surveillance of the centromere complex that in turn ensures stable transmission of CENP-A chromatin.


Assuntos
Centrômero/metabolismo , Cromatina/metabolismo , Cisteína Endopeptidases/metabolismo , Testes Genéticos , Biocatálise , Ciclo Celular , Proteína Centromérica A/metabolismo , Genótipo , Células HeLa , Humanos , Cinetocoros/metabolismo , Subunidades Proteicas/metabolismo , Proteólise , Sumoilação
5.
Biol Open ; 8(5)2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31072823

RESUMO

New blood vessel sprouting (angiogenesis) and vascular physiology are fundamental features of metazoan species but we do not fully understand how signal transduction pathways regulate diverse vascular responses. The vascular endothelial growth factor (VEGF) family bind membrane-bound receptor tyrosine kinases (VEGFRs), which trigger multiple signal transduction pathways and diverse cellular responses. We evaluated whether the MAP3K family member and proto-oncoprotein Tpl2 (MAP3K8) regulates basal and VEGF-A-stimulated signal transduction in endothelial cells. Notably, stimulation with exogenous VEGF-A increased Tpl2 mRNA levels and consequently de novo protein synthesis. Depletion of Tpl2 levels reveals a role in both basal and VEGF-A-stimulated endothelial cell responses, including endothelial-leukocyte interactions, monolayer permeability and new blood vessel formation. Under basal conditions, Tpl2 modulates a signal transduction cascade resulting in phosphorylation of a nuclear transcription factor (ATF-2) and altered endothelial gene expression, a pathway previously identified as crucial in VEGF-dependent vascular responses. Loss of Tpl2 expression or activity impairs signal transduction through Akt, eNOS and ATF-2, broadly impacting on endothelial function. Our study now provides a mechanism for Tpl2 as a central component of signal transduction pathways in the endothelium.

6.
Biol Open ; 6(10): 1404-1415, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28798148

RESUMO

Cell surface receptors can undergo recycling or proteolysis but the cellular decision-making events that sort between these pathways remain poorly defined. Vascular endothelial growth factor A (VEGF-A) and vascular endothelial growth factor receptor 2 (VEGFR2) regulate signal transduction and angiogenesis, but how signaling and proteolysis is regulated is not well understood. Here, we provide evidence that a pathway requiring the E1 ubiquitin-activating enzyme UBA1 controls basal VEGFR2 levels, hence metering plasma membrane receptor availability for the VEGF-A-regulated endothelial cell response. VEGFR2 undergoes VEGF-A-independent constitutive degradation via a UBA1-dependent ubiquitin-linked pathway. Depletion of UBA1 increased VEGFR2 recycling from endosome-to-plasma membrane and decreased proteolysis. Increased membrane receptor availability after UBA1 depletion elevated VEGF-A-stimulated activation of key signaling enzymes such as PLCγ1 and ERK1/2. Although UBA1 depletion caused an overall decrease in endothelial cell proliferation, surviving cells showed greater VEGF-A-stimulated responses such as cell migration and tubulogenesis. Our study now suggests that a ubiquitin-linked pathway regulates the balance between receptor recycling and degradation which in turn impacts on the intensity and duration of VEGF-A-stimulated signal transduction and the endothelial response.

7.
Biol Open ; 5(5): 571-83, 2016 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-27044325

RESUMO

Vascular endothelial growth factor A (VEGF-A) binding to the receptor tyrosine kinase VEGFR2 triggers multiple signal transduction pathways, which regulate endothelial cell responses that control vascular development. Multiple isoforms of VEGF-A can elicit differential signal transduction and endothelial responses. However, it is unclear how such cellular responses are controlled by isoform-specific VEGF-A-VEGFR2 complexes. Increasingly, there is the realization that the membrane trafficking of receptor-ligand complexes influences signal transduction and protein turnover. By building on these concepts, our study shows for the first time that three different VEGF-A isoforms (VEGF-A165, VEGF-A121 and VEGF-A145) promote distinct patterns of VEGFR2 endocytosis for delivery into early endosomes. This differential VEGFR2 endocytosis and trafficking is linked to VEGF-A isoform-specific signal transduction events. Disruption of clathrin-dependent endocytosis blocked VEGF-A isoform-specific VEGFR2 activation, signal transduction and caused substantial depletion in membrane-bound VEGFR1 and VEGFR2 levels. Furthermore, such VEGF-A isoforms promoted differential patterns of VEGFR2 ubiquitylation, proteolysis and terminal degradation. Our study now provides novel insights into how different VEGF-A isoforms can bind the same receptor tyrosine kinase and elicit diverse cellular outcomes.

8.
Traffic ; 17(1): 53-65, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26459808

RESUMO

Vascular endothelial growth factor A (VEGF-A) regulates many aspects of vascular function. VEGF-A binding to vascular endothelial growth factor receptor 2 (VEGFR2) stimulates endothelial signal transduction and regulates multiple cellular responses. Activated VEGFR2 undergoes ubiquitination but the enzymes that regulate this post-translational modification are unclear. In this study, the de-ubiquitinating enzyme, USP8, is shown to regulate VEGFR2 trafficking, de-ubiquitination, proteolysis and signal transduction. USP8-depleted endothelial cells displayed altered VEGFR2 ubiquitination and production of a unique VEGFR2 extracellular domain proteolytic fragment caused by VEGFR2 accumulation in the endosome-lysosome system. In addition, perturbed VEGFR2 trafficking impaired VEGF-A-stimulated signal transduction in USP8-depleted cells. Thus, regulation of VEGFR2 ubiquitination and de-ubiquitination has important consequences for the endothelial cell response and vascular physiology.


Assuntos
Endopeptidases/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteólise , Transdução de Sinais , Ubiquitina Tiolesterase/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Endossomos/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Transporte Proteico , Ubiquitinação
9.
J Cardiovasc Transl Res ; 8(8): 458-65, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26385009

RESUMO

Lectin-like oxidized low-density lipoprotein receptor-1 (SR-E1, LOX-1, OLR1) was first discovered as a vascular receptor for modified lipoprotein particles nearly 20 years ago. Since then, in vitro and in vivo studies have demonstrated an association between LOX-1, a soluble form (sLOX-1) and a number of diseases including atherosclerosis, arthritis, hypertension and pre-eclampsia. However, converting such discoveries into tools and drugs for routine clinical use is dependent on translational preclinical and clinical studies but such studies have only begun to emerge in the past decade. In this review, we identify the key clinical applications and corresponding criteria that need to be addressed for the effective use of LOX-1-related probes and molecules for patient benefit in different disease states.


Assuntos
Anticorpos/uso terapêutico , Fármacos Cardiovasculares/uso terapêutico , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/tratamento farmacológico , Técnicas Imunológicas , Receptores Depuradores Classe E/antagonistas & inibidores , Pesquisa Translacional Biomédica/métodos , Animais , Anticorpos/efeitos adversos , Anticorpos/imunologia , Especificidade de Anticorpos , Fármacos Cardiovasculares/imunologia , Doenças Cardiovasculares/imunologia , Doenças Cardiovasculares/metabolismo , Desenho de Fármacos , Epitopos , Humanos , Terapia de Alvo Molecular , Valor Preditivo dos Testes , Receptores Depuradores Classe E/imunologia , Receptores Depuradores Classe E/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...